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Abstract

Facilitating functional recovery following brain injury is a key goal of

neurorehabilitation. Direct, objective measures of changes in the brain are critical

to understanding how and when meaningful changes occur, however, assessing

neuroplasticity using brain based results remains a significant challenge. Little is

known about the underlying changes in functional brain networks that correlate

with cognitive outcomes in traumatic brain injury (TBI). The purpose of this pilot

study was to assess the feasibility of an intensive three month cognitive

intervention program in individuals with chronic TBI and to evaluate the effects

of this intervention on brain-behavioral relationships. We used tools from graph
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theory to evaluate changes in global and local brain network features prior to and

following cognitive intervention. Network metrics were calculated from resting

state electroencephalographic (EEG) recordings from 10 adult participants with

mild to severe brain injury and 11 age and gender matched healthy controls. Local

graph metrics showed hyper-connectivity in the right inferior frontal gyrus and

hypo-connectivity in the left inferior frontal gyrus in the TBI group at baseline in

comparison with the control group. Following the intervention, there was a

statistically significant increase in the composite cognitive score in the TBI

participants and a statistically significant decrease in functional connectivity in the

right inferior frontal gyrus. In addition, there was evidence of changes in the brain-

behavior relationships following intervention. The results from this pilot study

provide preliminary evidence for functional network reorganization that parallels

cognitive improvements after cognitive rehabilitation in individuals with chronic

TBI.
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1. Introduction

Traumatic brain injury (TBI) is a serious and complex public health issue. In the

USA alone, there are over 1.6 million TBI’s reported every year (Langlois et al.,

2006) with many more unreported. A complex and debilitating neurological

disorder, TBI is defined as an alteration in brain function, or other evidence of

brain pathology, caused by an external force (Menon et al., 2010). Classified by

severity, TBI ranges from mild to severe, based on the length of time of loss of

consciousness, post-injury amnesia, Glasgow Coma Score (Teasdale and Jennett,

1974) and trauma related findings on neuroimaging (Malec et al., 2007). The

hallmark of TBI is diffuse axonal changes combined with continually evolving

secondary changes. This feature combined with the heterogeneity of external

factors such as location of injury, severity of injury, previous history and individual

response to brain injury, can result in unique and dramatic changes in brain

structure and brain function at many levels ranging from microscopic tears in white

matter to global changes in functional brain networks. Headaches, dizziness, sleep

disturbances, and fatigue often occurs immediately post injury, and may be severe.

Attention, memory, processing speed and executive functions (i.e. working

memory, cognitive flexibility, etc.) are also compromised early (Rabinowitz and

Levin, 2014) and recover inconsistently (Broglio and Puetz, 2008; McAllister

et al., 2006). A significant proportion of individuals with TBI continue to suffer

from persistent cognitive and behavioural complaints and disability (Kraus et al.,

2005; McAllister et al., 2006), resulting in prolonged or lifelong disability and

dependence on the health care system. It is estimated that 2% of the population live

with permanent disability related to TBI, with an estimated economic impact of
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$60 Billion/year in the USA(Finkelstein et al., 2006). Developing effective

rehabilitation strategies for this population is therefore of great importance.

At a behavioural level there is considerable evidence that targeted cognitive

interventions can improve attention, executive function, and memory (Caeyen-

berghs et al., 2016; Jolles et al., 2013; Kundu et al., 2013). In addition, cognitive

rehabilitation is reportedly effective in helping patients learn and apply

compensatory mechanisms for remaining deficits (Cicerone et al., 2011).

Improvements in specific tasks related to executive function and memory have

also been shown to generalize to functional improvement in everyday activities

(Kennedy et al., 2008). Given that cognition is dependent on the activity of widely

distributed functional brain networks (Bressler and Menon, 2010), evaluating the

characteristics of the underlying networks in response to behavioral change

stimulated by cognitive intervention can provide important insights into the

underlying neuroplastic process.

A powerful and elegant method of evaluating the characteristics of brain networks

is through the use of graph theory. In this framework, the brain is viewed as a

network with interactions and communication occurring over multiple levels

between local and distant areas (Rubinov and Sporns, 2010). One approach to

understanding the nature of these interactions is via functional connectivity.

Functional connectivity refers to the statistical interdependencies between

physiological time series recorded from the brain (Friston, 2011). Graph theory

has emerged as a promising tool in recent years for characterizing brain

connectivity at both global and regional levels (Bullmore and Sporns, 2009;

Rubinov and Sporns, 2010). Graph theory allows for the quantitative analysis of

network organization, characterizing the brain as a set of networks, with each

network being composed of distinct brain regions or “nodes”. The various nodes

are functionally connected via edges. The relationship between nodes and edges

provides information about the organization and efficiency of the network.

Networks with an ordered structure have a high clustering coefficient (a measure

that depicts the connectedness of immediate neighbors around individual vertices),

long characteristic path length (an index reflecting the overall integration of the

network), low global efficiency (defined as the average inverse shortest path) and

low density or cost (the fraction of present connections to possible connections)

(Wu et al., 2012). In contrast, randomly organized networks are characterized by a

low clustering coefficient, short characteristic path lengths, and a high global

efficiency and density.

The healthy brain has been shown to be a combination of ordered networks with a

certain fraction of randomly rewired links which results in “small-world”
networks, with tightly connected neighborhoods, short characteristic path lengths

and a high local efficiency (Wu et al., 2012). These small-world networks balance
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between local specialization and global integration, which are optimal for

information processing (Watts and Strogatz, 1998).

Graph theoretical approaches have recently been applied to understand the effect of

brain injury from a network perspective. In adults with TBI there appears to be a

shift towards sub-optimal network organization (Caeyenberghs et al., 2012;

Nakamura et al., 2009; Pandit et al., 2013). We have previously shown that mild

TBI in adolescents does not alter resting state global network efficiency but does

cause change in the local networks within the prefrontal cortex (Virji-Babul et al.,

2014). This provides evidence for local changes in the frontal regions of the brain

that are likely to affect the efficient processing of cognitive functions following

mTBI. Arnemann et al. (2014) applied graph theory to predict individual responses

to cognitive training in individuals with brain injury (Arnemann et al., 2015). They

found that modularity (a measure of the density of links within a community

relative to ones between communities) was able to predict improvements in

attention and executive function following cognitive training. This suggests that

functional brain imaging and graph theory has the potential to provide valuable

information for understanding the mechanisms that influence recovery from TBI.

The purpose of this study was to pilot measures using graph theory analysis to

evaluate the feasibility of these measures in capturing change following

intervention. The specific objectives of this study were: (1) To establish the

baseline global and local functional connectivity in individuals with TBI and

evaluate the association with neuropsychological functioning, (2) To evaluate the

changes in global and local functional connectivity in individuals with TBI

following a 3-month cognitive intervention program and (3) To determine if

network reorganization as measured by functional connectivity is associated with

changes in cognitive recovery following the 3-month cognitive intervention

program.

2. Methods

2.1. Participants

Participants with TBI were recruited from brain injury associations across the

Greater Vancouver (British Columbia, Canada) area. All TBI participants were

chronic with injuries occurring a minimum of 1 year prior to the start of the

intervention. All healthy controls were recruited from the lower mainland of

Vancouver in close proximity to the university. All controls were screened to

ensure that they had no history of head trauma, neuropsychiatric disorders,

substance abuse or any other neurological conditions. The participants with TBI

were first interviewed to determine eligibility and to evaluate the severity of TBI.

Participants were excluded if they were involved in litigation, had a history of

current or recent substance abuse or if they had other severe medical conditions
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affecting brain function. They were also excluded if they had a diagnosis of

psychiatric illness based on self report or when assessed with the Mini-

international neuropsychiatric interview (MINI) (Sheehan et al., 1998). TBI

severity was classified mild or moderate/severe, as per ACRM criteria (Mild

Traumatic Brain Injury Committee, Head Injury Interdisciplinary Special Interest

Group, American Congress of Rehabilitation Medicine. 1993). using retrospective

self report of the duration of loss of consciousness and length of post-traumatic

amnesia.

The experiments described in this study were approved by the Human Ethics

Review Board at the University of British Columbia. All participants provided

written consent according to the guidelines set forth by the Clinical Research

Ethics Board at the University of British Columbia and this study complies with all

regulations.

Table 1. Demographic and clinical profile of participants with TBI and Controls. M = male; F = female;

TBI = Traumatic Brain Injury; MVA = Motor Vehicle Accident.

Participant ID Sex Age Years of education Time since injury (years) Etiology Mechanism of injury Severity

S001 M 51 14 22 TBI MVA Severe

S002 F 50 18 29 TBI MVA Severe

S003 M 36 16 24 TBI Multiple Concussion Mild

S004 M 41 12 8 TBI MVA Severe

S005 M 18 13 2 TBI Multiple Concussion Mild

S007 F 48 20 4 TBI MVA Mild

S008 M 26 13 6 TBI Fall Severe

S009 F 35 13 8 TBI MVA Severe

S011 F 38 18 7 TBI MVA Severe

S012 F 50 17 7 TBI MVA Mild

C001 F 53 20 NA Healthy NA NA

C002 M 36 20 NA Healthy NA NA

C003 M 30 18 NA Healthy NA NA

C004 M 52 20 NA Healthy NA NA

C005 M 21 16 NA Healthy NA NA

C006 M 38 14 NA Healthy NA NA

C008 F 50 14 NA Healthy NA NA

C009 M 24 16 NA Healthy NA NA

C010 F 27 12 NA Healthy NA NA

C011 M 45 14 NA Healthy NA NA

C012 M 21 16 NA Healthy NA NA
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2.2. Demographic characteristics

Table 1 shows the demographic features and clinical features for all the

participants in this study. The mean age of the TBI participants was 39.6 years

(18, 54), with a mean of 15.3 years of formal education. The gender distribution

was 50% male. Time since initial injury for the TBI group ranged from 2 to 29

years with an average of 11.7 years. The healthy controls had a mean age of 37.4

years (21, 53) with a mean of 16.6 years of formal education and a gender

distribution of 73% male. There were no significant differences in age [t(19) =

0.429, p = 0.673, d = 0.19] or education [t(19) = -1.055, p = 0.305, d = -0.46]

between groups. All participants were right handed. All participants with TBI were

able to complete the 3-month program.

2.3. Neuropsychological testing

All subjects were administered several neuropsychological tests assessing

processing speed, memory, and executive function, as deficits in these cognitive

skills have been documented across a range of TBI (Podell et al., 2010). The

specific tests used were as follows:

1. Rey Auditory Verbal Learning Test (RAVLT)(Lezak and Lezak, 2004): On this

verbal learning and memory test, the primary variables employed were total recall

during learning trials and delayed free recall.

2. Trailmaking Test Parts A and B (Reitan and Wolfson, 1993): The Trails A test

measures visual attention and processing speed, and Trails B assesses more

complex attentional shifting. The time to completion for each task was employed.

3. Verbal Fluency (Lezak and Lezak, 2004): On the phonemic verbal fluency task,

subjects were asked to generate as many words beginning with the letters F, A, S.

The main outcome was number of correct words produced.

For all tasks, demographics corrected z-scores were used as the primary measures.

For the RAVLT and Verbal fluency tasks, alternate versions of the tests were used

during follow-up testing (see below) to minimize practice effects. A global

composite score was derived by averaging z-scores for the 5 primary measures

described above.

2.4. EEG recording and analysis

EEG was recorded using a 64-channel HydroCel Geodesic SensorNet (EGI,

Eugene, OR). The EEG cap was placed on each participant’s head and 5 minutes of

resting state data was recorded with their eyes closed. EEG was recorded and

amplified using Net Amps 300 amplifier, at a sampling rate of 250 Hz. Scalp

electrode impedances were generally under 50 kΩ. The signal was referenced to
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the vertex (Cz) and filtered from 4 to 40 Hz. A notch filtered at 60 Hz was applied.

The EEG signals were analyzed offline using Brain Electrical Source Analysis

(BESA) (MEGIS Software GmbH). An automated artifact scan was performed for

extracting motion and excessive eye movement artifacts. BESA brain source

montage was used to convert the EEG activity obtained from all the 64 scalp

channels into predicted contributions of a set of 15 different brain source activity.

The advantage of using a brain source montage is that the volume conduction

effects are reduced in comparison with the surface electrodes and provides a better

model of the underlying brain source activity.

2.5. Graph theoretical analysis

Based on the learned connectivity networks, graph theoretical analysis was used to

extract the structural features from learned networks (Bullmore and Sporns, 2009).

Traditional graph theoretical measures were used to characterize the network

features in terms of density, global efficiency, clustering coefficient, and

modularity. Density is defined as the fraction of present connections to all

possible connections. Global efficiency describes the communication ability of the

entire graph (Latora and Marchiori, 2001), and is defined as the average of the

inverse shortest path. Clustering coefficient describes the degree to which nodes in

a graph tend to cluster together. Modularity of the network is used to measure how

well the network can be divided into the sub-modules (Newman and Girvan, 2004).

A higher value of modularity demonstrates that the graph is better divided with

tighter connections within modules. We used the Brain Connectivity Toolbox

(Rubinov and Sporns, 2010) running Matlab (Natick, MA) to perform the graph

theoretical analysis.

2.6. Construction of connectivity matrix

In this paper, we constructed the brain functional connectivity networks using the

preselected EEG signals and an error-rate controlled network learning algorithm.

Based on the learned connectivity networks, the graph measures were further

calculated to extract the functional network features. EEG signals were

interpolated at 27 locations (FP2, FPZ, FP1, F10, F8, F4, FZ, F3, F7, F9, A2,

T8, C4, CZ, C3, T7, A1, P10, P8, P4, PZ, P3, P7, P9, O2, OA, O1) on the scalp

using BESA’s Virtual Standard 10–10 Average montage. EEG time series from

these 27 locations were used to construct the brain connectivity networks with each

channel representing one brain region in the network. The connectivity network

graphs were then computed for each individual subject and for each emotional

expression using false discovery rate controlled PC (PCFDR) algorithm, which is a

statistical model that tests the conditional dependence/independence between any

two regions based on all other brain regions (Li and Wang, 2009).
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We used partial correlation to evaluate the conditional independence, which

estimates the directed interactions between any two brain regions after removing

the effects of all other brain areas. The PC algorithm starts from a complete graph

and tests for conditional independence in an efficient way. The PCFDR algorithm

is designed to control the false discovery rate (FDR), which evaluates the

proportion between the connections that are falsely detected to all those detected,

below a specified predefined level. Compared to the traditional Type-1 and Type-2

error rates, FDR has more conservative error rate criteria for modeling brain

connectivity due to its direct relation to the uncertainty of the networks of interest.

The PCFDR algorithm and pseudo-code are described in details in (Li and Wang,

2009). F FDR threshold was set at the 5% level.

2.7. Baseline and Post-intervention testing

Prior to the start of the program all participants took part in a comprehensive

baseline assessment, which included resting state EEG and neuropsychological

testing. All testing was completed at the University of British Columbia. The

neuropsychological testing and clinical scales took approximately 90–120 min to

complete. All participants took part in the EEG testing. Only 6 TBI patients

completed the initial neuropsychological testing at the first time point. 4 additional

TBI patients received their baseline neuropsychological testing at the 3-month time

point and thus we elected to exclude the additional 4 patients from analyses

involving cognitive data.

Following the 3-month intervention program EEG was conducted on all 10 TBI

patients. Symptoms of generalized anxiety, depression, and general psychological

distress were assessed using the Generalized Anxiety Disorder − 7 (GAD-7;

(Spitzer et al., 2006), Patient-Health Questionnaire (PHQ-9; (Kroenke et al., 2001),

and Brief Symptom Inventory − 18 (BSI-18; (Derogatis and Melisaratos, 1983)).

2.8. Cognitive intervention

The Arrowsmith Program is a suite of cognitive exercises. The goal of these

exercises is to improve cognitive functioning across a broad domain, for example,

executive functions, reasoning and memory. Each individual’s program was based

on an assessment of that individual’s learning profile to identify his or her specific

areas of difficulty. Each individual had his or her specific schedule of tasks and

exercises to be completed during the course of a day. The exercises for each

individual student were uniquely based on their individually identified learning

profiles. These include written, visual, auditory and computer exercises. Each

cognitive program had a series of intensive and graduated tasks. Performance

criteria of automaticity, consistency and accuracy are built in at all levels and an

individual was required to meet these criteria before mastering to the next level of
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complexity. Goals were set daily, weekly and monthly and each month the

individual’s attained levels in each program was entered into a database and

analyzed to see if progress met benchmark expectations. In order to maximize

evaluation of transfer effects, the neuropsychological battery that was used to

assess outcome was assembled independently of the cognitive exercise tasks that

were used within the cognitive intervention program.

The cognitive intervention program took place four days a week for 4 − 5 hours a

day for a 3-month period. Each day was composed of 6–8 blocks of different

activities depending on individual’s specific areas of weakness.

2.9. Analysis

Demographic data including age, gender and years of education were evaluated for

between group differences with t-tests. T-tests were also performed to test

differences in the EEG measures and the neuropsychological measures between

groups at baseline. Two a priori EEG clusters of interest were selected for analysis

based on our previous work examining changes in functional connectivity in

adolescents with mTBI (Virji-Babul et al., 2014). EEG clusters of interest included

F7 (L) inferior frontal gyrus (IFG) and F10 (R) inferior frontal gyrus. Paired t-tests

were conducted to compare baseline and post-intervention scores in the TBI group.

Pearson correlations were conducted to evaluate specific correlations between

graph theory metrics and the individual and global composite neuropsychological

scores.

3. Results

3.1. Differences between groups at baseline

Table 2 shows the mean scores (SD) on the global composite score based on the

mean of all test scores. As expected, at baseline the TBI group performed worse on

the overall composite score although the difference did not reach statistical

significance as a likely result of diminished power. Consistent with this, the

Table 2. Global composite scores for the controls, TBI participants at baseline and

TBI participants at 3 months post intervention.

Cognititon Composite (Z score) N Mean Std. Deviation Significance (2 tailed)

Control vs. TBI Control 12 .1166 .62026 .102

TBI 6 -.5823 1.10851

Baseline vs. 3 month Baseline 6 -.5823 1.1085 .000

3 Month 6 .0103 1.3002
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Cohen’s d effect size for the difference was .78, which indicates a moderate to

large difference.

At baseline there were no significant differences between groups for any of the

four graph metrics associated with global connectivity: density (t(17) = 1.03, p =

0.32, d = 0.47), global efficiency (t(17) = -0.278, p = 0.78, d = -0.13), modularity

(t(17) = 1.05, p = 0.31, d = 0.48), clustering coefficient, t(17) = 1.612, p = 0.125,

d = 0.74.

In contrast with the global metrics we found significant differences in local metrics

at the F10 and F7 electrode clusters corresponding to the right and left inferior

frontal gyrus, respectively between groups (Fig. 1). Specifically, the F10 hub value

was significantly higher compared to the healthy control group, t(17) = 2.24, p =

0.039, d = 1.01. A number of graph metrics for F7, showed significant decreases in

the TBI group in comparison with the healthy control group. These included F7

degree, t(17) = -2.28, p = 0.036, d = -1.05, F7 betweenness, t(17) = -2.41, p =

0.028, d = -1.1 and F7 hub value, t(17) = -2.28, p = 0.035, d = -1.05. These results

suggest that network connections are denser in the right inferior frontal regions and

less dense in the left inferior frontal regions in the TBI group.

3.2. Cognitive training related changes

Table 2 also shows the scores following the three-month cognitive intervention in

the participants that completed testing at baseline and post-intervention. A paired-

[(Fig._1)TD$FIG]

Fig. 1. Baseline functional connectivity measures showing differences between TBI − Baseline and

controls in local connectivity measures. (A. F10 Hub Value; B. F7 Degree; C. F7 Betweenness; D.

F7Hub Value).

Article No~e00373

10 http://dx.doi.org/10.1016/j.heliyon.2017.e00373

2405-8440/© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://dx.doi.org/10.1016/j.heliyon.2017.e00373


test showed that there was a statistically significant increase in the composite score

between baseline and post-intervention in the TBI group. In addition, there were no

significant changes in generalized anxiety, t(5) = 0.08, p = 0.94, depressive

symptoms, t(5) = 0.86, p = 0.43, or general psychological distress, t(5) = 0.58, p =

0.59.

In terms of functional connectivity, no changes were seen in the global

connectivity measures. For the local connectivity measures, we noted changes in

specific graph theory metrics at the F10 and F7 electrode clusters. Fig. 2 shows that

at F10, degree, [t(9) = 3.35, p = 0.008] (Fig. 2A), betweenness [t(9) = 3.52, p =

0.007] (Fig. 2B), and hub value [t(9) = 3.53, p = 0.006] (Fig. 2C) showed a

statistically significant decrease following the intervention. At F7, measures

increased, however none were statistically significant: degree, t(9) = -0.896, p =

0.394, betweenness, t(9) = -1.05, p = 0.323 and hub value, t(9) = -1.01, p = 0.338.

Fig. 3 shows the relationship between global density and the overall composite

score. Note that there is a positive correlation in the controls with higher scores

associated with higher global density (P=.63). In the TBI group there was a

negative correlation between these variables at baseline (P = -.39). Following

intervention, there was a trend towards a positive slope (P=.28). Fig. 4 shows the

relationship between the RAVLT and global density (4A) and the RAVLT and F10

degree (4B). Both correlations show a change from a negative correlations at

baseline (P = -.38; P = -.33) to a positive correlation at 3 months post intervention

(P=.69; P=.77). No other correlations were found to be significant.

[(Fig._2)TD$FIG]

Fig. 2. Post-intervention connectivity measures for TBI − Baseline, TBI − 3 Months Post Intervention

compared to Controls, showing significant changes after 3 months in F10 Degree (A.), F10

Betweenness (B.) and F10 F10Hub Value (C.).
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4. Discussion

The purpose of this study was to pilot measures using graph theory analysis to

evaluate the feasibility of these measures to capture change following a 3 month

program of cognitive intervention and to determine if these changes correlated with

measures of cognition. The data from our pilot study provides preliminary

evidence for improved performance in cognition and corresponding changes in

local functional network connectivity in bilateral frontal regions following a 3

month cognitive intervention program in a small sample of adults with chronic

TBI.

Graph theoretical analysis at baseline revealed that there were no significant

differences in global measures of functional connectivity between groups

suggesting that in this cohort, there was no change in resting state global network

connectivity, although there was evidence of disruption in the relationship between

global metrics and measures of cognition. We did find significant changes in local

networks in this group. Specifically, we observed increases in graph metrics in F10

and decreases in F7. F10 corresponds to the (R) inferior frontal gyrus (IFG) and F7

to the (L) IFG (Koessler et al., 2009). The IFG is a key region involved in three

processes of cognitive control: working memory, task switching and inhibitory

control (Sundermann and Pfleiderer, 2012). The increase in hub value of IFG on

the right and decrease on the left may seem paradoxical, but it suggests a disruption

of network organization that is centered around the frontal regions. The hub value

[(Fig._3)TD$FIG]

Fig. 3. Scatter plot showing relationship between Global Density and Global composite score in

controls, TBI participants at baseline and TBI participants at 3 months post intervention.
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of one node is related to the structure of its neighbors, where a high value means

that there are other key nodes that are connected with that hub. The increased value

of the hub on the right indicates hyper-connectivity and the decrease on the left

suggests hypo-connectivity. Overall, the consequences of disruption in the physical

network due to TBI are reflected in disruptions in functional connectivity. These

types of disruptions in functional connectivity have previously been reported in the

literature. Hillary et al. (Hillary et al., 2014) found increased functional

connectivity specifically in the brain regions that are most highly connected or

“rich hubs”. We have also previously found increased functional connectivity in

adolescents with mTBI in frontal regions (Borich et al., 2014). Palacios and

colleagues recently reported increased functional connectivity within the frontal

[(Fig._4)TD$FIG]

Fig. 4. (A). Scatter plot showing the relationship between RAVALT and Density in controls, TBI

participants at baseline and TBI participants at 3 months post intervention. (B). Scatter plot showing the

relationship between RAVALT and F10 Degree in controls, TBI participants at baseline and TBI

participants at 3 months post intervention.
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lobe in patients with chronic TBI. In contrast, Pandit et al., reported decreased

functional connectivity in patients with chronic TBI (Pandit et al., 2013).

Although initial hypotheses in the literature related to increased connectivity have

focused on compensatory strategies as a mechanism to account for loss of

structural connectivity, more recently, Hilary et al. (Hillary et al., 2015) have

shown that hyper-connectivity is a common finding across a range of neurological

conditions including TBI, multiple sclerosis, mild cognitive impairment and

Alzheimer’s disease. They hypothesize that increased connectivity may allow the

brain to continue to meet task demands in the face of network disruption.

Importantly, they suggest that this increased connectivity comes at the cost of

slowed processing speed and cognitive fatigue. Our data shows that increased

connectivity in the frontal regions is in fact correlated with lower cognitive scores

suggesting that greater resources are being used that may lead to lower information

processing efficiency.

Although hyper-connectivity is a common finding across a range of neurological

disorders, from a network perspective it is unlikely that this is the only response to

structural changes in the brain. Across all brain networks it is more likely that there

is a combination of hyper and hypo connectivity that reflects the changes in

different brain networks (Hillary et al., 2015). Indeed, our data supports this by

showing that hyper-connectivity is not uniform across brain regions following TBI.

Furthermore, the pattern of connectivity that we observed in each hemisphere

provides data for the hypothesis that detailed analysis of network organization

across the whole brain is necessary to understand and map the patterns of brain

connectivity that underlie the cognitive deficits in individuals with TBI.

4.1. Training related changes in cognition

Within several important constraints of the present study (i.e. small sample size

and a lack of a TBI control group who did not receive cognitive intervention which

is necessary to rule out practice effects for cognitive improvements), the analysis of

cognitive performance from baseline to post-treatment in patients suggested trends

in improvements in overall cognition. Importantly, these improvements were

observed in a sample of chronic patients. There are few published studies that have

examined the effectiveness of cognitive intervention in patients who are in the

chronic stages of recovery(Cook et al., 2014).

In a recent re-analysis of meta-analytic studies assessing the effects of cognitive

rehabilitation on acquired brain injury, it was concluded that patients with

traumatic brain injuries were more likely to receive benefit from cognitive

retraining targeting attention based tasks (Cicerone et al., 2011). Because the

cognitive measures included in the neuropsychological battery within this study
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were highly attention-based, this likely maximized the likelihood of observing

cognitive gains as a result of the cognitive intervention.

4.2. Training related changes in functional connectivity

Interestingly, our data show that cognitive intervention lead to changes in the

organization of brain networks such that connectivity within hub areas are

reorganized, and this occurred with a parallel improvement in cognition. In

particular, we found a small shift in the correlation between overall Global density

and the global composite score in the TBI group which was negatively correlated at

baseline and moved to a slight positive trend following the intervention period. We

also observed shifts in correlations between auditory verbal learning and global

connectivity as well as measures related to brain regions in the right inferior frontal

gyrus. These changes suggest a subtle reorganization between brain and behavior

relationships that were disrupted at baseline.

Our results provide preliminary evidence that participating in an intensive

cognitive intervention program was associated with neuroplastic changes in adults

with chronic TBI that occurred in parallel with improvements in cognition. Overall,

we observed a shift from a baseline pattern of network organization that may be

characterized by neural inefficiency and decreased cognition to a reorganization

that reflected improved efficiency with possible improvements in fluid cognition.

Importantly this data suggests that brain network organization is capable of

reorganization even in chronic patients with intense intervention. Further work

with a larger sample is clearly needed to understand the nuances of how brain

organization impacts on cognitive ability and performance.
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